\(\int \frac {\sqrt {\cos (c+d x)} (B \cos (c+d x)+C \cos ^2(c+d x))}{\sqrt {a+b \cos (c+d x)}} \, dx\) [921]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 44, antiderivative size = 479 \[ \int \frac {\sqrt {\cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=-\frac {(a-b) \sqrt {a+b} (4 b B-3 a C) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 a b^2 d}-\frac {\sqrt {a+b} (3 a C-2 b (2 B+C)) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d}+\frac {\sqrt {a+b} \left (4 a b B-3 a^2 C-4 b^2 C\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^3 d}+\frac {(4 b B-3 a C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt {\cos (c+d x)}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b d} \]

[Out]

1/4*(4*B*b-3*C*a)*sin(d*x+c)*(a+b*cos(d*x+c))^(1/2)/b^2/d/cos(d*x+c)^(1/2)+1/2*C*sin(d*x+c)*cos(d*x+c)^(1/2)*(
a+b*cos(d*x+c))^(1/2)/b/d-1/4*(a-b)*(4*B*b-3*C*a)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(
d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a
/b^2/d-1/4*(3*a*C-2*b*(2*B+C))*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b
)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d+1/4*(4*B*a*b-3
*C*a^2-4*C*b^2)*cot(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,((-a-b)/(a-b
))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^3/d

Rubi [A] (verified)

Time = 1.36 (sec) , antiderivative size = 479, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {3108, 3069, 3140, 3132, 2888, 3077, 2895, 3073} \[ \int \frac {\sqrt {\cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {\sqrt {a+b} \left (-3 a^2 C+4 a b B-4 b^2 C\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{4 b^3 d}-\frac {\sqrt {a+b} (3 a C-2 b (2 B+C)) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{4 b^2 d}-\frac {(a-b) \sqrt {a+b} (4 b B-3 a C) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{4 a b^2 d}+\frac {(4 b B-3 a C) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{4 b^2 d \sqrt {\cos (c+d x)}}+\frac {C \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 b d} \]

[In]

Int[(Sqrt[Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

-1/4*((a - b)*Sqrt[a + b]*(4*b*B - 3*a*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*
Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a
- b)])/(a*b^2*d) - (Sqrt[a + b]*(3*a*C - 2*b*(2*B + C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]
/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[
c + d*x]))/(a - b)])/(4*b^2*d) + (Sqrt[a + b]*(4*a*b*B - 3*a^2*C - 4*b^2*C)*Cot[c + d*x]*EllipticPi[(a + b)/b,
 ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d
*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(4*b^3*d) + ((4*b*B - 3*a*C)*Sqrt[a + b*Cos[c + d*x]]*Sin
[c + d*x])/(4*b^2*d*Sqrt[Cos[c + d*x]]) + (C*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2*b*d)

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3069

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*
x])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f
*x])^n*Simp[a^2*A*d*(m + n + 1) + b*B*(b*c*(m - 1) + a*d*(n + 1)) + (a*d*(2*A*b + a*B)*(m + n + 1) - b*B*(a*c
- b*d*(m + n)))*Sin[e + f*x] + b*(A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m
, 1] &&  !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rule 3108

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[1/b^2, Int[(a + b*Sin[e + f*x])
^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 3132

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[C/b^2, Int[Sqrt[a + b*Sin[e + f
*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[1/b^2, Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a + b
*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3140

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[
e + f*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Dist[1/(2*d), Int[(1/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Si
n[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d)
)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0
] && NeQ[c^2 - d^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {\cos ^{\frac {3}{2}}(c+d x) (B+C \cos (c+d x))}{\sqrt {a+b \cos (c+d x)}} \, dx \\ & = \frac {C \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b d}+\frac {\int \frac {\frac {a C}{2}+b C \cos (c+d x)+\frac {1}{2} (4 b B-3 a C) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{2 b} \\ & = \frac {(4 b B-3 a C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt {\cos (c+d x)}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b d}+\frac {\int \frac {-\frac {1}{2} a (4 b B-3 a C)+a b C \cos (c+d x)-\frac {1}{2} \left (4 a b B-3 a^2 C-4 b^2 C\right ) \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{4 b^2} \\ & = \frac {(4 b B-3 a C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt {\cos (c+d x)}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b d}+\frac {\int \frac {-\frac {1}{2} a (4 b B-3 a C)+a b C \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{4 b^2}-\frac {\left (4 a b B-3 a^2 C-4 b^2 C\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx}{8 b^2} \\ & = \frac {\sqrt {a+b} \left (4 a b B-3 a^2 C-4 b^2 C\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^3 d}+\frac {(4 b B-3 a C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt {\cos (c+d x)}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b d}-\frac {(a (4 b B-3 a C)) \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx}{8 b^2}-\frac {(a (3 a C-2 b (2 B+C))) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx}{8 b^2} \\ & = -\frac {(a-b) \sqrt {a+b} (4 b B-3 a C) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 a b^2 d}-\frac {\sqrt {a+b} (3 a C-2 b (2 B+C)) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d}+\frac {\sqrt {a+b} \left (4 a b B-3 a^2 C-4 b^2 C\right ) \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^3 d}+\frac {(4 b B-3 a C) \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{4 b^2 d \sqrt {\cos (c+d x)}}+\frac {C \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b d} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 19.41 (sec) , antiderivative size = 1175, normalized size of antiderivative = 2.45 \[ \int \frac {\sqrt {\cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\frac {C \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 b d}+\frac {-\frac {4 a (4 b B-a C) \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-16 a b C \left (\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )+2 (4 b B-3 a C) \left (\frac {i \cos \left (\frac {1}{2} (c+d x)\right ) \sqrt {a+b \cos (c+d x)} E\left (i \text {arcsinh}\left (\frac {\sin \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\cos (c+d x)}}\right )|-\frac {2 a}{-a-b}\right ) \sec (c+d x)}{b \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} \sqrt {\frac {(a+b \cos (c+d x)) \sec (c+d x)}{a+b}}}+\frac {2 a \left (\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{(a+b) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \sqrt {\frac {(a+b) \cot ^2\left (\frac {1}{2} (c+d x)\right )}{-a+b}} \sqrt {-\frac {(a+b) \cos (c+d x) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}} \csc (c+d x) \operatorname {EllipticPi}\left (-\frac {a}{b},\arcsin \left (\frac {\sqrt {\frac {(a+b \cos (c+d x)) \csc ^2\left (\frac {1}{2} (c+d x)\right )}{a}}}{\sqrt {2}}\right ),-\frac {2 a}{-a+b}\right ) \sin ^4\left (\frac {1}{2} (c+d x)\right )}{b \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\right )}{b}+\frac {\sqrt {a+b \cos (c+d x)} \sin (c+d x)}{b \sqrt {\cos (c+d x)}}\right )}{8 b d} \]

[In]

Integrate[(Sqrt[Cos[c + d*x]]*(B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Sqrt[a + b*Cos[c + d*x]],x]

[Out]

(C*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(2*b*d) + ((-4*a*(4*b*B - a*C)*Sqrt[((a + b)*Cot[
(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[
(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (
-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 16*a*b*C*((Sqrt[((
a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c +
 d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/
Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (Sqrt[(
(a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c
+ d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)
/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*
(4*b*B - 3*a*C)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c
+ d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*S
ec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc
[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a
+ b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c +
d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*
Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcS
in[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Co
s[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])))/b + (Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*Sqrt[Cos[c + d*x]])))/(
8*b*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2522\) vs. \(2(437)=874\).

Time = 16.83 (sec) , antiderivative size = 2523, normalized size of antiderivative = 5.27

method result size
parts \(\text {Expression too large to display}\) \(2523\)
default \(\text {Expression too large to display}\) \(2535\)

[In]

int((B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-B/d/b*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)
-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*cos(d*x+c)^2+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(
1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b*cos(d*x+c)^2-2*(cos(d*x+c)/(1+cos
(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a
+b))^(1/2))*a*cos(d*x+c)^2+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)
*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*cos(d*x+c)+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+
b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b*cos(d*x+c)-4
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi(cot(d*x+c)-csc(d
*x+c),-1,(-(a-b)/(a+b))^(1/2))*a*cos(d*x+c)+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos
(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(
a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b-2*(cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,
(-(a-b)/(a+b))^(1/2))*a-b*cos(d*x+c)^2*sin(d*x+c)-a*cos(d*x+c)*sin(d*x+c))/(1+cos(d*x+c))/(a+b*cos(d*x+c))^(1/
2)/cos(d*x+c)^(1/2)-1/4*C/d/b^2*(2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))
^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)^2-4*(cos(d*x+c)/(1+cos(d*x+c)))^(1
/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*
cos(d*x+c)^2-3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot
(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^2-3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*co
s(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)^2+6*(cos(
d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),
-1,(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)^2+8*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos
(d*x+c)))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*b^2*cos(d*x+c)^2+4*(cos(d*x+c)/(1+co
s(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b)
)^(1/2))*a*b*cos(d*x+c)-8*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*El
lipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2*cos(d*x+c)-6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b
)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)-
6*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticE(cot(d*x+c)-csc(d
*x+c),(-(a-b)/(a+b))^(1/2))*a*b*cos(d*x+c)+12*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+c
os(d*x+c)))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*a^2*cos(d*x+c)+16*(cos(d*x+c)/(1+c
os(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/
(a+b))^(1/2))*b^2*cos(d*x+c)-2*b^2*cos(d*x+c)^3*sin(d*x+c)+2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1
/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b-4*EllipticF(cot(d*x
+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)
))^(1/2)*b^2-3*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b
)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^2-3*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(cos(d*x+
c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b+6*EllipticPi(cot(d*x+c)-csc(d*x+c
),-1,(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a
^2+8*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b
*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b^2+a*b*cos(d*x+c)^2*sin(d*x+c)-2*b^2*cos(d*x+c)^2*sin(d*x+c)+3*a^2*cos(d*x
+c)*sin(d*x+c)-2*a*b*cos(d*x+c)*sin(d*x+c))/(1+cos(d*x+c))/(a+b*cos(d*x+c))^(1/2)/cos(d*x+c)^(1/2)

Fricas [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(cos(d*x + c))/sqrt(b*cos(d*x + c) + a), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\text {Timed out} \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)*cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(1/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(cos(d*x + c))/sqrt(b*cos(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \cos \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)*cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))*sqrt(cos(d*x + c))/sqrt(b*cos(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )\right )}{\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \]

[In]

int((cos(c + d*x)^(1/2)*(B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(1/2),x)

[Out]

int((cos(c + d*x)^(1/2)*(B*cos(c + d*x) + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^(1/2), x)